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A new treatment of the effect of the work of compression upon thermal conduc- 
tivity measurements by the transient hot-wire technique is presented. The new 
analysis improves upon those given earlier and leads to quite a different result. 
The result makes it clear that the dilute gaseous state need not be excluded from 
the range of thermodynamic states in which accurate measurements are made 
owing to this effect, in contrast to the conclusions of earlier work. 
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1. I N T R O D U C T I O N  

The t ransient  hot-wire technique has become established as the method  of 

choice for accurate measurements  of the thermal  conduct ivi ty  of fluids over 

a wide range of the rmodynamic  states E1 ]. In  this technique the observed 
temporal  history of the temperature  rise of a wire, AT, subject to an 
imposed heat flux per uni t  length, q, is used to determine the thermal  

conduct ivi ty  of a fluid, 2, from the equat ion  

A T = Z l n  4xt (1) 
a2C 

in which a is the radius of the wire and  ~c the thermal  diffusivity 

= ;r G (2) 
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Despite the considerable advantages of the technique, two particular 
regions of state have not proved amenable to study. The first is the neigh- 
borhood of the critical region of a pure fluid. Here the large vertical extent 
of the transient hot-wire cell means that the critical point is sampled by 
only one location on the wire. Furthermore, the relatively large temperature 
difference applied ( A T ~  1 K) means that the singular dependencies of some 
of the physical properties of the fluid on temperature render measurement 
impractical [2]. 

The second region of state excluded from study is that of the dilute gas. 
In this case, there are also two reasons for the exclusion. At extremely low 
densities the continuum hydrodynamics upon which the method is based 
become inapplicable since the dimensions of the hot wires involved become 
comparable with the mean-free path of the gas leading to temperature 
discontinuities at the gas/wire interface [3]. In practice, the densities at 
which this effect becomes significant are very low (P ~< 0.01 MPa) and are 
therefore not a severe limitation [3]. On the other hand, a second effect, 
that of compressible work, has been found to be of greater significance [-3]. 
This effect arises because the transient heating of a compressible fluid by a 
central wire causes the expanding gas to do work on the surrounding, 
cooler gas contained within a finite volume within which the pressure 
increases [3]. 

The latter process has been analyzed by Healy et al. [-3 ], who derived 
an approximate expression for the magnitude of the effect on the tem- 
perature rise of the wire. The derivation, and therefore the result, was not 
seen to be sufficiently accurate to permit the application of a correction 
during measurements. Rather, it was intended to be a guide as to the condi- 
tions to be imposed during design and measurement so as to render the effect 
negligible. Procedures for the verification that the practical instrument 
satisfied these conditions were proposed [-3] and implemented I-4]. These 
procedures replaced an earlier suggestion by Haarman [-5] of experimental 
means to compensate for the effect. In essence, the practical procedures 
constrained measurements to be performed above a minimum density and 
in a sufficiently large volume of fluid. Typically, a lower pressure of about 
0.6 MPa was found to be suitable [4]. 

For supercritical temperatures, this constraint proved unimportant 
because it has been possible to measure the thermal conductivity over 
a range of pressures (densities) along an isotherm and to determine the 
limiting dilute gas thermal conductivity by extrapolation [-6]. For sub- 
critical temperatures, however, the scope for the application of the same 
technique is more limited because, for many fluids, the critical pressure is 
sufficiently low that the total range of densities available for measurement 
is very restricted and a reliable extrapolation therefore precluded. This is 
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particularly true of the new fluids proposed as replacement refrigerants, 
which have critical pressures in the range of 3 4  MPa. 

Occasionally, measurements have been performed at densities suffi- 
ciently low that the effect of compressible work deduced by Healy et al. [3] 
should have been significant, although the results have not been reported 
in the literature. It was found that the magnitude of the correction given by 
the result of Healy et al. [3] was far greater than that observed in practice. 
For example, for a typical measurement in argon at 300 K and 0.1 MPa, 
with an imposed temperature rise of 3 K, the correction according to the 
result of Healy et al. is 0.06 K at a time of 0.1 s and 0.55 K at a time of 1 s. 
Although deviations from the ideal behavior of the system represented 
by Eq. (1) have been observed, they have been very much smaller than 
predicted by the analysis of Healy et al. [3]. 

The present paper is therefore concerned with a reexamination of the 
effect of compressible work in the transient hot-wire experiment in order to 
establish a correction which can be applied to measurements performed 
under appropriate conditions. The results should permit the extension of 
the range of thermodynamic states to which the experimental technique is 
applicable and are of current importance. 

2. ANALYSIS 

2.1. The Ideal Model  

The theory of the transient hot-wire technique for the measurement of 
the thermal conductivity, 2, of a fluid is founded upon an ideal model of 
the experiment. In the ideal model an infinitely long line source of heat, 
q (W.m-1),  is initiated at time t = 0  in a fluid of infinite extent and 
constant physical properties. The temperature rise of the fluid at a radial 
position r from the line source is then given by [1, 3] 

where 

q f ; e  x dx (3) ~Tid= E , ( ~ ) = ~  x 

= rZ/4tct (4) 

For small values of 4, such as are easily achieved in practice [3, 4], 
the expansion of the exponential integral EI(~) may be employed and 

ATid ---~-~ln \ r - ~ J  +o  ~ (5) 
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where 

C = exp(7) 

and 7 is Euler's constant, 7 = 0.5772157 .... Thus, measurement of ATid as a 
function of time may be employed to determine 2 from the slope of the line 
relating A Tid to Int. 

In practice, the line source of heat is provided by a thin (3- to 5-#m 
radius) metallic wire, fixed at both ends to a support, within which electri- 
cal energy is dissipated [ 1-]. The resistance of the wire is used as a monitor 
of the temperature of the fluid in contact with its surface. Evidently, this 
arrangement departs from the ideal arrangement in several respects, so that 
it is necessary to develop corrections to the working equation to account 
for them. This was performed systematically by Healy et al. [3], and subse- 
quently, a number of other effects have been considered [1 ]. The basis of 
these analyses has always been that all of the corrections are rendered 
small enough by design that they can be treated independently. A summary 
of all known corrections is given elsewhere Eli. 

One of the deviations from the ideal model that has to be considered 
arises from the fact that density of the real fluid depends on temperature. 
In the real instrument this has several consequences, including the develop- 
ment of a vertical velocity component (natural convection). The present 
analysis is concerned with two other resulting effects: the radial velocity 
component of the gas and the consequent work of compression. The two 
effects are treated together because, as will emerge, there is a considerable 
cancellation of their effects that is not observed if they are treated 
separately. 

2.2. The Effect of Compressibility 

2.2.1. A Perfect Gas of  Infinite Extent 

To derive the correction we consider the situation in which an 
infinitely long line source of heat is placed at the center of a radial coor- 
dinate system (r, 0, z) within an infinite fluid for which all thermophysical 
properties are constants except the density, which obeys the perfect gas 
equation of state, 

P = p R T  (6) 

In these circumstances, owing to the symmetry of the problem, the 
hydrodynamic conservation equations may be written as follows: 
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for mass, 

P at T at + v P dr : f  + r ~ r  (rv) =0 (7) 

for momentum, 

c~v Ov RTOP+v_ 0 (raV~ 
-~+VOr P dr r ~ r \  ~?r] (8) 

and for energy, 

Here 

so that 

~-[+V ar pCprOr r~r pCp ~ + v ~ r  (9) 

(1o1 
0 1 n T  Je  

/~=1 

for a perfect gas, and 

v = p/(pM) (11) 

v = 0  

P = Po = Po/RTo 

the boundary conditions 

is the kinematic viscosity, where M is the molecular weight of the gas. 
In order to derive the required correction, it is necessary to find the 

difference between the temperature rise of the fluid in the ideal case and 
that given by the solution of Eqs. (7) to (9) subject to the initial conditions 

T =  To } 

P = Po 
t < 0 for all r (12) 

and 
T =  To, r --* oc for all t (13) 

v = O, r = 0 for all t 

0T q 
Limr  - t>~0 (14) 
r~o dr 27~2' 

840:132-2 
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To proceed we make all variables dimensionless and of order unity and 
seek a perturbation solution for the temperature rise about that of the ideal 
model. 

At first sight, it might seem that the natural perturbation parameter 
would be/3 because, when/3 = 0, the problem reduces to that for an incom- 
pressible fluid. However, this is not appropriate since/3 4~ 1. Accordingly, 
the only possible perturbation parameter is a dimensionless heat flux 
6 = q/2 T o. 

The next problem concerns the estimation of the order of magnitude 
of the temperature change, the pressure change, and the velocity, v. With 
the exception of the temperature change the magnitudes cannot be known 
a priori, and it is necessary to try a number of possibilities to establish 
that combination which is internally consistent, that is, where the final 
perturbation sought is small compared with the unperturbed under all 
circumstances. The only combination that secures this result is to use a 
dimensionless temperature rise, 

T-To 
O= 

q/2 

and to assume that the perturbation to the temperature rise in the case of 
the compressible fluid is of order 6, so that 

O(r, t) = Oo(r, t) + 01(r, t) 6 (15) 

where Oo(r, t) is the solution of the incompressible fluid problem of Eq. (3), 

1 
Oo = d Tid/(ql)~) = -~  El(r2/4Kt) (16) 

For the dimensionless velocity we employ 

V* ---- v r l / r  (17) 

where r I is a characteristic length in the problem (the wire radius in 
practice). We then assume that v* is also of order 6 so that 

v* =#6 (18) 

For the pressure we use the dimensionless form 

~ = ( ~ - ~ o ~ / 6 2  
\ Po J /  

(19) 
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which is of second order in 6. Finally, for the dimensionless radial coor- 
dinate we use a=r / r l ,  and for time t * =  ca/r 2. We now further assume, 
following Healy et al. [3],  that radial variations in the pressure on the time 
scale of the measurements (0.1 - 1 s) are very small, having been eliminated 
by the transmission of sound waves. In fact, it is only necessary to assume 
that QP/cgr,,~ 6 3 for the following analysis to be valid. In addition, because 
the principal effects of the dependence of the density or temperature have 
now been incorporated, we use p = Po (a constant) wherever it still occurs 
in the energy equation. 

We now substitute Eqs. (15), (18), and (19) into the conservation 
Eqs. (7)-(9), expand to order 6 3, and equate the terms of order 6 and 6 2 
independently. 

To order 6 we find for the mass conservation equation 

~0 o Pr g(r 
- /7  0 t * =  a 0a (20) 

where Pr is the Prandtl number Pr = (IJCp/d,M), and to order 62 we find 

~ +/70o ~70o ~Ol ~70o 0 
3t ---7 0-~ - / 7  ~ - / 7  Pr ~b ~ = (21) 

To neither of these orders is the 
the energy equation we find to order 1 

OOo 1 o ( 
~ t - - ; = ~  a 0o-) 

and to order 6 

momentum equation significant so that for 

(22) 

~01 ~00 1 ~ (0.~01~ /7R (~Tg (23) 
0-~ +Prod Oa - a  ~?a \ -~ ]-t-C-pp ~gt--g 

The solution of Eq. (22) subject to the initial condition 

0 o=0 ,  t* < 0  for all a 

and the boundary conditions 

0o = 0, r --* oo for all t 

and 

cOOo 1 
lira a . . . .  
~ o  c~a 2zr 
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is of course Eq. (16) so that this enables Eq. (20) to be integrated to find 
~b, the dimensionless velocity, which is 

q~ = 2@Pr [1--e-aZ/4t*] --crl (24) 

after application of the boundary condition ~b = 0 at ~r = 0. We note here 
that, although no boundary condition on ~b as cr ~ ov has been imposed, 
~b ~ 0 in this limit. 

This result for ~b can be employed to eliminate ~b from Eqs. (21) and 
(23) and, from the pair, ~3rc/(~t* can be eliminated by subtraction. This leads 
to a partial differential equation for 01, 

c~01 { l - s )  1 ~ (0.~01~ 

~__E ( a 2 )  1 e-,~z/4t*+ ~ 
47r 1 - ~  4m---g 27z---~ 

x (1  - -  e ~ 2 / 4 , . )  1 2,4t .  - - e  - a /  ~) 2~a (1 - -  (25) 

in which we have written 

/~2R 
- (26) 

Cp 

for convenience and used the known result for 0o. 
This equation can readily be solved by the use of the similarity 

variable ~ = a2/4t * and we find the correction, 01, as 

1 { r e  Eli(1 + s ) z ] e  (~-~)~[1-(1-e)fl]d z 
01(4) - 16~ 2 z 

-- f ~ ZEl(Z)-z d z+ f~ (1 -e )  flEl(Sz)e-(1-~)Zz dz 

+ [ l n ( l + e ) + ( 1  e) f l ln(1-~e)]I~ e-(l ~)~ } - -- dz ( 2 7 )  
_ Z 

by application of the boundary conditions 01 ( ~ )  = 0 and 
L i m ~ o ( r  301/(3a=0. The second and fourth of these integrals may be 
evaluated analytically in terms of defined functions, but the other two may 
not. However, we merely require an expansion of the result for small values 
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of 3- Such an expansion can be derived provided that the four integrals on 
the RHS of Eq. (27) are combined into one. It can be shown I-7] that the 
expansion leads to 

01(3)= {A+e~ln~+(~-e~-2e+e~)~+o(~21n~)}  (28) 

where 7 is Euler's constant, and 

A=f l (1 -e )  G\~-~_~] G ~ \ ]-~_-~_~/-~[ln(1-e)]  2 (29) 

with 

fT 
1 ln(1 + x) 

G ( v )  = - -  d x  
X 

~2 
G(O) 12 

1 
G(r) = - G ( 1 / r ) - ~  (in ~): 

(30) 

The function G(r) is readily evaluated by numerical quadrature. 
Thus, the difference between the temperature rise of the fluid and that 

for an incompressible fluid, which arises from the combined effects of radial 
convection and compression work, is 

6Tc= ATia(r , t ) -  AT(r, t) 

so that for this infinite perfect gas, 

6To(r, t) = + \ 4~2 ]  To [_ + e ~-~ In ~xt 

(31) 

(32) 

to leading order. Thus, in a practical thermal conductivity cell with a heat 
source of finite radius a, the correction to be applied to the measured 
temperature rise of the wire to recover the temperature rise of the ideal 
model is 

( q ~ 2 1 V  ~a 2 
~STc(a,t)=\~2 j ~00 LA + ~-~ in 4~t]  (33) 

2.2.2. A Perfect Gas of Finite Extent 

If the perfect gas is of finite extent, bounded internally by a solid wall 
of radius a, acting as the heat source, and externally by a solid wall of 
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radius b, both of length L, with b/a ~> 1, the preceding analysis cannot be 
carried through in its entirety. This is because it is not possible to use the 
similarity variable ~ = a2/4t * to solve the equivalent of Eq. (25). Thus, to 
examine this case we have solved Eqs. (7)-(9) numerically subject to the 
initial conditions 

P=Po, T= To, 

and the boundary conditions 

v = 0  at r=a, 
and 

v = 0, t ~< 0 for all r (34) 

r=b for all t (35) 

27ra ~-~ r:a: -q2 (36) 

The numerical solution has been obtained by casting the equations and 
boundary and initial conditions in finite-difference form. Radial derivatives 
are replaced by central differences, with 18 nonuniform mesh steps: the 
mesh is smaller near the inner radius (the wire), where gradients are 
largest. Time derivatives are replaced by backward differences with a time 
step of 5 x 10 -s  s, leading to an implicit set of equations which are solved 
by successive overrelaxation [8],  with an overrelaxation parameter of 1.2. 
This yields the correction 6To defined by Eq. (31) and evaluated at r=a. 
It should, however, be noted that the correction 6T~ is extremely small 
compared with the temperature difference A Tid, as shown in Section 3. 
Thus, the numerical solution is likely not to be very accurate. Since the 
purpose of obtaining the numerical solution is, however, only to show that 
~T~ is no larger (to within an order of magnitude) in the finite case than 
in the infinite case, this inaccuracy is of no real consequence. 

3. RESULTS 

In order to examine the magnitude of the correction 6To for both finite 
and infinite perfect gases, we consider just the example of measurements in 
argon at Po = 0.1 MPa, To -- 300 K. For  a transient hot-wire cell equipped 
with a heat source of radius a ~- 3.8 #m, the heat input required is of the 
order of q -~ 0.05 W �9 m-1. The properties of argon under the conditions of 
interest are 2 -~ 20 roW. m -  1. K -  1, p ___ 40 mol .  m -  3, Cp = 5/2 R, so that 
x ~ - 2 . 5 x 1 0  5m z.s  1, a n d s = 2 / 5 .  

Inserting these values into Eqs. (6) and (32) we find the results listed 
in Table I for ATia and 6Tc at a selection of times during the course of a 
measurement for a gas of infinite extent. The same table includes the results 
obtained from the numerical solution of the case of the finite perfect gas 
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Table I. The Magnitude of the Correction 6Tc for a Typical Measurement 
in Argon at a Pressure of 0.1 MPa and a Temperature of 300 K 

233 

Present result 

Perfect gas Perfect gas 
of infinite of finite Result of Healy 

extent extent etal. [3] 

Time, t(s) dTid (K) aT c (K) aT c (K) aT c (K) 

0.1 2.56 5.3520 x 10 6 6.450 x 10 -6 0.06 
0.5 2.88 5.3525 x 10 6 1.487x 10 7 0.27 
1.0 3.02 5.3529 x 10 -6 7.628 • 10 8 0.55 

with outer radius b = 5 x  10-3m. It is clear that in both cases 6To is 
extremely small (~<2• 10 -5 K) and therefore negligible by comparison 
with A Tid. As mentioned earlier, the differences between the analytic 
solution of the infinite fluid and the numerical solution for the finite fluid 
are not significant in the context of the present analysis beyond the demon- 
stration that the effect in the latter case is clearly not much larger than in 
the former case. Furthermore, the time dependence of the correction is 
very small; for the case of an infinite fluid the correction changes by less 
than 1 x 10 9 K,  from 0.l to  1 S. This last observation follows from the fact 
that within Eq. (33), A >> (ea2/4~:t) In a2/4~t. It is also worthy of note that 
the results for the finite case are essentially the same, within the limits of 
error of the numerical solution, as those for the infinite case. The analysis 
in Section 2.2.1 shows that this is because the principal effect arises not 
from the pressure increase in the gas but from the expansion of the gas at 
essentially constant pressure and that, because the velocity of the gas is 
small for large r, there is essentially no difference between the radial 
velocity profile in the finite and that in the infinite case. 

The consequences of these results for measurements with the transient 
hot-wire technique are significant because it is clearly possible to neglect 
the compression-work effect completely for both thermal-conductivity and 
thermal-diffusivity determinations [ 1 ]. 

3.1. A Comparison with an Earlier Result 

The analysis of nominally the same effect by Healy et al. [3]  leads to 
quite a different result, namely, 

qLR,  
~To - - -  (37) 

pCp Cv V 
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where V= 7z(b2-a 2) L is the (finite) volume of the container. Table I 
includes the values of this correction for the same example of a measure- 
ment in argon. The result given by Eq. (37) is five orders of magnitude 
larger than that which is obtained from the present analysis. Since the pre- 
sent result is more consistent with experimental observation, it is necessary 
to establish the cause of the discrepancy. Indeed, the discrepancy is severe 
because, whereas the present result decays with time and increases with 
fluid density, the result of Healy et aL has completely opposing behavior. 

Healy et al. solved an energy equation containing only the compres- 
sion work term, i.e., 

- - =  r + - - - -  (38) 
~t pCp r pCp ~t 

Thus, they neglected the radial convection of heat contained in the term 
v &T/Or of Eq. (9), which they treated in a separate analysis. The present 
result indicates that it is inconsistent to ignore the term v ~T/~r in the 
energy equation since it is of the same order as the compression work term 
but of the opposite sign. The magnitude of the term can be attributed to 
the fact that whereas v, the radial velocity, is very small, the temperature 
gradients is very large (~  10 6 K. m 1). It seems therefore that the analysis 
of Healy et al. [-3] neglects a significant cancellation which occurs among 
the terms of the complete energy equation and therefore greatly over- 
estimates the effect. 

4. CONCLUSION 

The effects of compression work in the transient hot-wire technique 
have been shown to be negligible. Thus, measurements under a range of 
thermodynamic states precluded from study by the technique hitherto may 
now be carried out. 
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